# HTTPSインターフェース
このセクションでは、MyScaleのHTTPSインターフェースの使用方法について簡単に説明します。MyScaleはClickHouseと互換性があるため、詳細についてはClickHouseのHTTPインターフェース (opens new window)のドキュメントを参照してください。
HTTPSインターフェースにアクセスするには、対応する接続情報を使用する必要があります。取得方法については、接続の詳細を参照してください。
環境変数にこの情報を保存して、簡単にアクセスできるようにすることもできます。以下の例を参考にしてください。
export MYSCALE_CLUSTER_URL=YOUR_CLUSTER_URL
export MYSCALE_USERNAME=YOUR_USERNAME
export MYSCALE_CLUSTER_PASSWORD=YOUR_CLUSTER_PASSWORD
次のコマンドを使用して、HTTPSインターフェースが正常に動作しているかどうかを確認するために、URLに対して単純なリクエストを行います。
$ curl $MYSCALE_CLUSTER_URL/ping
Ok.
ユーザーとパスワードが正しく動作しているかどうかを確認するために、ユーザーとパスワードを指定してURLにリクエストを行うこともできます。例えば:
$ curl "$MYSCALE_CLUSTER_URL" -d 'SELECT 1' \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD"
1
ユーザーとパスワードが有効な場合、1
というレスポンスが返されます。
次のコマンドを使用して、次のような4つのカラム id
、data
、date
、label
を持つテーブルを作成します。
$ cat << EOF |
CREATE TABLE default.myscale_categorical_search
(
id UInt32,
data Array(Float32),
CONSTRAINT check_length CHECK length(data) = 128,
date Date,
label Enum8('person' = 1, 'building' = 2, 'animal' = 3)
)
ORDER BY id;
EOF
$ curl "$MYSCALE_CLUSTER_URL" -d @- \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD"
次に、次のデータを含むCSVファイル data.csv
を作成します。
$ cat > data.csv <<EOF
0,"[0,0,0,1,8,7,3,2,5,0,0,3,5,7,11,31,13,0,0,0,0,29,106,107,13,0,0,0,1,61,70,42,0,0,0,0,1,23,28,16,63,4,0,0,0,6,83,81,117,86,25,15,17,50,84,117,31,23,18,35,97,117,49,24,68,27,0,0,0,4,29,71,81,47,13,10,32,87,117,117,45,76,40,22,60,70,41,9,7,21,29,39,53,21,4,1,55,72,3,0,0,0,0,9,65,117,73,37,28,23,17,34,11,11,27,61,64,25,4,0,42,13,1,1,1,14,10,6]","2030-09-26","person"
1,"[65,35,8,0,0,0,1,63,48,27,31,19,16,34,96,114,3,1,8,21,27,43,57,21,11,8,37,8,0,0,1,23,101,104,11,0,0,0,0,29,83,114,114,77,23,14,18,52,28,8,46,75,39,24,59,60,2,0,18,10,20,52,52,16,12,28,4,0,0,3,5,8,102,79,58,3,0,0,0,11,114,112,78,50,17,14,45,104,19,31,53,114,73,44,34,26,3,2,0,0,0,1,8,9,34,20,0,0,0,0,1,23,30,75,87,36,0,0,0,2,0,17,66,73,3,0,0,0]","1996-06-22","building"
2,"[0,0,0,0,0,0,4,1,15,0,0,0,0,0,10,49,27,0,0,0,0,29,113,114,9,0,0,0,3,69,71,42,14,0,0,0,0,1,56,79,63,2,0,0,0,38,118,77,118,60,8,8,18,48,59,104,27,16,7,13,80,118,34,21,118,47,4,0,0,1,32,99,61,40,31,57,46,118,118,61,80,64,16,21,20,33,23,27,6,22,16,14,51,33,0,0,76,40,8,0,2,14,42,94,19,42,57,67,23,34,22,10,9,52,15,21,5,1,3,3,1,38,12,5,18,1,0,0]","1975-10-07","animal"
3,"[3,9,45,22,28,11,4,3,77,10,4,1,1,4,3,11,23,0,0,0,26,49,6,7,5,3,3,1,11,50,8,9,11,7,15,21,12,17,21,25,121,12,4,7,4,7,4,41,28,2,0,1,10,42,22,20,1,1,4,9,31,79,16,3,23,4,6,26,31,121,87,40,121,82,16,12,15,41,6,10,76,48,5,3,21,42,41,50,5,17,18,64,86,54,17,6,43,62,56,84,116,108,38,26,58,63,20,87,105,37,2,2,121,121,38,25,44,33,24,46,3,16,27,74,121,55,9,4]","2024-08-11","animal"
4,"[6,4,3,7,80,122,62,19,2,0,0,0,32,60,10,19,4,0,0,0,0,10,69,66,0,0,0,0,8,58,49,5,5,31,59,67,122,37,1,2,50,1,0,16,99,48,3,27,122,38,6,7,11,31,87,122,9,8,6,23,122,122,69,21,0,11,31,55,28,0,0,0,61,4,0,37,43,2,0,15,122,122,55,32,6,1,0,12,5,22,52,122,122,9,2,0,2,0,0,5,28,20,2,2,19,3,0,2,12,12,3,16,25,18,34,35,5,4,1,13,21,2,22,51,9,20,57,59]","1970-01-31","animal"
5,"[6,2,19,22,22,81,31,12,72,15,12,10,3,6,1,37,30,17,4,2,9,4,2,21,1,0,1,3,11,9,5,2,7,11,17,61,127,127,28,13,49,36,26,45,28,17,4,16,111,46,11,2,7,25,40,89,2,0,8,31,63,60,28,12,0,18,82,127,50,1,0,0,94,28,11,88,15,0,0,4,127,127,34,23,25,18,18,69,6,16,26,90,127,42,12,8,0,3,46,29,0,0,0,0,22,35,15,12,0,0,0,0,46,127,83,17,1,0,0,0,0,14,67,115,45,0,0,0]","2025-04-02","building"
6,"[19,35,5,6,40,23,18,4,21,109,120,23,5,12,24,5,0,5,87,108,47,14,32,8,0,0,0,27,36,30,43,0,29,12,10,15,6,7,17,12,34,9,14,65,20,23,28,14,120,34,14,14,9,34,120,120,7,6,7,27,56,120,120,23,9,5,4,7,2,6,46,13,29,5,5,32,12,20,99,19,120,120,107,38,13,7,24,36,6,24,120,120,55,26,4,3,5,1,0,0,1,5,19,18,2,2,0,1,18,12,30,7,0,5,33,29,66,50,26,2,0,0,49,45,12,28,10,0]","2007-06-29","animal"
7,"[28,28,28,27,13,5,4,12,4,8,29,118,69,19,21,7,3,0,0,14,14,10,105,60,0,0,0,0,11,69,76,9,5,2,18,59,17,6,1,5,42,9,16,75,31,21,17,13,118,44,18,16,17,30,78,118,4,4,8,61,118,110,54,25,10,6,21,54,5,5,6,5,38,17,11,31,6,24,64,15,115,118,117,61,13,13,22,25,2,11,66,118,87,25,10,2,10,11,3,2,9,28,4,5,21,18,35,17,6,10,4,30,20,2,13,13,7,30,71,118,0,0,3,12,50,103,44,5]","1970-09-10","building"
8,"[41,38,21,17,42,71,60,50,11,1,2,11,109,115,8,4,27,8,5,22,11,9,8,14,20,10,4,33,12,7,4,1,18,115,95,42,17,1,0,0,19,6,46,115,91,16,0,7,66,7,4,15,12,32,91,109,12,3,1,8,21,115,96,17,1,51,78,14,0,0,0,0,50,40,62,53,0,0,0,3,115,115,40,12,6,13,25,65,7,30,51,65,110,92,25,9,0,1,13,0,0,0,0,0,4,22,11,1,0,0,0,0,13,115,48,1,0,0,0,0,0,36,102,63,11,0,0,0]","2007-10-26","person"
9,"[0,0,0,0,0,2,6,4,0,0,0,0,0,1,44,57,0,0,0,0,0,15,125,52,0,0,0,0,6,57,44,2,23,1,0,0,0,6,20,23,125,30,5,2,1,3,73,125,16,10,11,46,61,97,125,93,0,0,0,31,111,96,21,0,20,6,0,0,9,114,63,5,125,125,83,8,2,26,5,23,14,56,125,125,37,10,7,10,11,2,17,87,42,5,8,19,0,0,7,32,56,91,8,0,1,17,17,3,14,71,15,5,7,9,35,10,2,5,24,39,14,16,4,9,22,6,13,11]","1971-02-02","building"
EOF
CSVファイル data.csv
を以下のコマンドでテーブル myscale_categorical_search
に挿入します:
$ curl "$MYSCALE_CLUSTER_URL/?query=INSERT%20INTO%20myscale_categorical_search%20FORMAT%20CSV" \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD" \
--data-binary @data.csv
挿入に使用されるクエリは実際には INSERT INTO myscale_categorical_search FORMAT CSV
ですが、URLではスペースを%20で置換する必要があります。
また、現在のHTTPインターフェイスのデフォルトの読み取りタイムアウトは1分です。この方法で大きなファイルをインポートする際には、接続が中断される可能性があるため、大きなファイルをインポートする場合はPythonクライアントなどの他の方法を使用することをお勧めします。
大量のデータを転送する際や即座に圧縮されたダンプを作成する際には、圧縮を使用してネットワークトラフィックを減らすことができます。以下は圧縮されたデータをアップロードする例です:
# gzipを使用してデータを圧縮
$ gzip -c data.csv > data.gz
# 圧縮されたデータをアップロード
$ curl "$MYSCALE_CLUSTER_URL/?query=INSERT%20INTO%20myscale_categorical_search%20FORMAT%20CSV" \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD" \
-H "Content-Encoding: gzip" \
--data-binary @data.gz
以下はサーバーからの圧縮されたデータアーカイブを受け取る例です:
$ curl -vsS "$MYSCALE_CLUSTER_URL/?enable_http_compression=1" \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD" \
-H "Accept-Encoding: gzip" \
--output result.gz -d 'SELECT number FROM system.numbers LIMIT 3'
$ zcat result.gz
0
1
2
テーブル myscale_categorical_search
の列 data
に対して MSTG
ベクトルインデックスを作成します:
$ curl "$MYSCALE_CLUSTER_URL" \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD" \
-d "ALTER TABLE myscale_categorical_search ADD VECTOR INDEX v1 data TYPE MSTG"
ベクトルインデックスとベクトル検索の詳細については、ベクトル検索 を参照してください。
指定されたベクトル [3.0,9,45,22,28,11,4,3,77,10,4,1,1,4,3,11,23,0,0,0,26,49,6,7,5,3,3,1,11,50,8,9,11,7,15,21,12,17,21,25,121,12,4,7,4,7,4,41,28,2,0,1,10,42,22,20,1,1,4,9,31,79,16,3,23,4,6,26,31,121,87,40,121,82,16,12,15,41,6,10,76,48,5,3,21,42,41,50,5,17,18,64,86,54,17,6,43,62,56,84,116,108,38,26,58,63,20,87,105,37,2,2,121,121,38,25,44,33,24,46,3,16,27,74,121,55,9,4]
に対する myscale_categorical_search
テーブルでの最も近い10件の近傍を検索します:
$ curl "$MYSCALE_CLUSTER_URL" \
-H "X-ClickHouse-User: $MYSCALE_USERNAME" \
-H "X-ClickHouse-Key: $MYSCALE_CLUSTER_PASSWORD" \
-d "SELECT id, date, label, distance(data,
[3.0,9,45,22,28,11,4,3,77,10,4,1,1,4,3,11,23,0,
0,0,26,49,6,7,5,3,3,1,11,50,8,9,11,7,15,21,12,17,21,25,121,12,4,7,4,7,4,
41,28,2,0,1,10,42,22,20,1,1,4,9,31,79,16,3,23,4,6,26,31,121,87,40,121,82,
16,12,15,41,6,10,76,48,5,3,21,42,41,50,5,17,18,64,86,54,17,6,43,62,56,84,
116,108,38,26,58,63,20,87,105,37,2,2,121,121,38,25,44,33,24,46,3,16,27,74,
121,55,9,4]) as dist FROM default.myscale_categorical_search ORDER BY dist LIMIT 10"
3 2024-08-11 animal 0
5 2025-04-02 building 211995
9 1971-02-02 building 214219
2 1975-10-07 animal 247505
0 2030-09-26 person 252941
1 1996-06-22 building 255835
7 1970-09-10 building 266691
4 1970-01-31 animal 276685